ashg logo  

Media Contact:
Nalini Padmanabhan

ASHG Communications Manager

301.634.7346

press@ashg.org

 

For Immediate Release

Saturday, October 10, 2015

9:35 am U.S. Eastern Time (UTC-05:00)

 

 

Hard-to-Detect Chromosomal Anomalies Explain Neurodevelopmental Birth Defects

Findings Reported at ASHG 2015 Annual Meeting

 

BETHESDA, MD – Balanced chromosomal abnormalities (BCAs), a category of structural changes to the human genome, may account for a large portion of birth defects related to brain development and function, according to research presented at the American Society of Human Genetics (ASHG) 2015 Annual Meeting in Baltimore.

Claire Redin, PhD, Massachusetts General Hospital and Broad Institute (Photo courtesy Dr. Redin)

BCAs are changes to the structure of an individual’s chromosomes, in which one or more fragments of DNA breaks apart from the regions around it and is reattached elsewhere in the genome, either on the same chromosome or a different one. In their simplest form, a single fragment is moved to another region of the genome, but more complex BCAs may involve more than one fragment from more than one chromosome.

 

Unlike chromosomal deletions or duplications, BCAs do not result in the gain or loss of any genetic material. However, they do disrupt the function of DNA at the breakpoints of the fragments involved, in both their original locations and their new ones, and have been implicated in neurodevelopmental birth defects.

 

“We studied BCAs in 111 patients with congenital neurodevelopmental conditions and 36 with other conditions and mapped where the breakpoints were,” explained Claire Redin, PhD, a postdoctoral researcher at Massachusetts General Hospital and the Broad Institute, and first author on the new study. “By mapping the breakpoints, we were able to identify genes that were disrupted in patients with birth defects, which suggests that these genes play a key role in normal brain development,” she said.

 

Because no genetic material is gained or lost, conventional tools for genome analysis cannot generally detect BCAs. Thus, they have not received much attention as a significant cause of disease. To overcome this challenge, Dr. Redin and her colleagues used a modified version of whole-genome sequencing that utilized large, overlapping strands of DNA to find the breakpoints. When sequences that are normally located far apart in the genome were found on the same strand or adjacent ones, the researchers were able to confirm that a BCA had brought them together and look more closely to identify the genes disrupted at the breakpoint.

 

“As a first step, we looked at how the breakpoint locations mapped relative to known disease genes, to see how many of the defects we observed in patients could be explained by disruptions to these,” Dr. Redin said. They found that 46 percent of breakpoints disrupted a single gene; 24 percent disrupted regions between genes; and 30 percent disrupted at least two genes.

 

The researchers also studied other genomic features near the breakpoints to see what may be triggering the DNA to break apart at that location. Somewhat unsurprisingly, they observed that breakpoints tended to coincide with known recombination ‘hotspots’ – specific regions where genetic exchange between a person’s corresponding chromosomes tends to occur. They also identified genomic regions where BCAs seemed to cluster, including one narrow band in a region between genes, in which nine patients with similar neurodevelopmental conditions showed a breakpoint. 

 

“There is obviously something unusual happening where the BCAs clustered, which we plan to study in future work,” Dr. Redin said. The researchers are currently conducting a more detailed analysis of the 24 percent of breakpoints located between genes and how these may affect brain development.

 

“Our eventual goal is to be able to predict the effects of BCAs based on where they are located and which genes are disrupted,” Dr. Redin said. “The data we collect through this study and future ones will help us work toward this predictive model.”

 

Presentation: Dr. Redin will present her research on Saturday, October 10, 2015, from 9:35-9:55 a.m., in Hall F of the Baltimore Convention Center.

 

Press Availability: Dr. Redin will be available to discuss this research with interested media on Friday, October 9, 2015, from 11:00 a.m.-12:00 p.m., in the ASHG 2015 Press Office (Room 301).

 

Reference: Redin C et al. (2015 Oct 10). Abstract: Characterizing de novo balanced cytogenetic abnormalities through sequencing in 147 subjects with multiple congenital abnormalities. Presented at American Society of Human Genetics 2015 Annual Meeting. Baltimore, Md.

 

* * *

 

About the American Society of Human Genetics (ASHG)

Founded in 1948, the American Society of Human Genetics is the primary professional membership organization for human genetics specialists worldwide. Its nearly 8,000 members include researchers, academicians, clinicians, laboratory practice professionals, genetic counselors, nurses, and others with an interest in human genetics. The Society serves scientists, health professionals, and the public by providing forums to: (1) share research results through the ASHG Annual Meeting and in The American Journal of Human Genetics; (2) advance genetic research by advocating for research support; (3) educate current and future genetics professionals, health care providers, advocates, policymakers, educators, students, and the public about all aspects of human genetics; and (4) promote genetic services and support responsible social and scientific policies. For more information, visit: http://www.ashg.org.

 

9650 Rockville Pike | Bethesda, MD 20814 | 301.634.7300 | society@ashg.org | www.ashg.org

Connect with ASHG on Twitter (@GeneticsSociety) | Facebook | LinkedIn