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Summary
Publicly available genetic summary data have high utility in research and the clinic, including prioritizing putative causal variants, poly-

genic scoring, and leveraging common controls. However, summarizing individual-level data can mask population structure, resulting

in confounding, reduced power, and incorrect prioritization of putative causal variants. This limits the utility of publicly available data,

especially for understudied or admixed populations where additional research and resources are most needed. Although several methods

exist to estimate ancestry in individual-level data, methods to estimate ancestry proportions in summary data are lacking. Here, we pre-

sent Summix, a method to efficiently deconvolute ancestry and provide ancestry-adjusted allele frequencies (AFs) from summary data.

Using continental reference ancestry, African (AFR), non-Finnish European (EUR), East Asian (EAS), Indigenous American (IAM), South

Asian (SAS), we obtain accurate and precise estimates (within 0.1%) for all simulation scenarios. We apply Summix to gnomAD v.2.1

exome and genome groups and subgroups, finding heterogeneous continental ancestry for several groups, including African/African

American (�84% AFR, �14% EUR) and American/Latinx (�4% AFR, �5% EAS, �43% EUR, �46% IAM). Compared to the unadjusted

gnomAD AFs, Summix’s ancestry-adjusted AFs more closely match respective African and Latinx reference samples. Even on modern,

dense panels of summary statistics, Summix yields results in seconds, allowing for estimation of confidence intervals via block bootstrap.

Given an accompanying R package, Summix increases the utility and equity of public genetic resources, empowering novel research op-

portunities.
Introduction

Genetic summary data are a cornerstone of modern ana-

lyses. Allele frequencies (AFs) from publicly available data

such as the Genome Aggregation Database (gnomAD)1

and Allele Frequency Aggregator (ALFA) from dbSNP2 can

be used to prioritize putative causal variants for rare dis-

eases and as pseudo controls in case-control analysis.3–6

Compared to individual-level data, genetic summary data

often have fewer barriers to access, promoting open sci-

ence and the broad use of valuable resources. However,

summary-level genetic data frequently contain fine-scale

and continental-level population structure. For instance,

unquantified continental ancestry exists in gnomAD’s ‘‘Af-

rican/African American,’’ ‘‘American/Latinx,’’ and ‘‘other’’

groups as well as in other publicly available data (e.g., the

BRAVO server for TopMED).7 Using public data without ac-

counting for the underlying population structure can lead

to confounded associations and incorrect prioritization of

putative rare causal variants.

The use of mixture models to estimate population struc-

ture has a history going back over two decades, beginning

with IMMANC8 and later the commonly-used STRUC-

TURE,9 originally using Dirichlet priors for multinomial
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modeling. Inference was performed via Markov chain

Monte Carlo, which limits tractability to datasets with

thousands to tens of thousands of markers. As datasets

grew with the advent of genome-wide arrays, and later

with sequencing, new methods were designed with

improved convergence characteristics, such as the

maximum-likelihood methods FRAPPE10 and ADMIX-

TURE,11 as well as the variational method FastSTRUC-

TURE.12 Along the way, methods were developed to

leverage pooled data,13 e.g., iAdmix,14 with improvements

to enhance supervised analysis in the ADMIXTURE frame-

work.15 However, no method was designed explicitly and

efficiently to model mixtures with genome-wide, summary

statistic data that are common in modern genomics.

Individuals and samples from understudied or admixed

populations are most likely to lack large public resources

with precisely matched ancestry data. As a result, re-

searchers and clinicians working with these populations

are often left with a suboptimal choice: use the closest

but still poorly matched ancestral group or do not use

the publicly available and highly useful resource.6,16 The

former has the potential to produce biased results in the

very populations where additional high-quality research

is needed, while the latter is likely to suffer from smaller
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sample sizes and thus a loss of statistical power. This choice

exacerbates inequities in research in understudied and ad-

mixed populations.17,18 These issues are magnified in the

context of precision medicine where genetic summary

data will most likely not be sufficiently matched for the

majority of people who themselves are a mixture of conti-

nental or fine-scale ancestries. Thus, methods to estimate

and adjust for population structure within publicly avail-

able genetic summary data are needed.

Here, we present Summix, an efficient method that iden-

tifies, estimates, and adjusts for the proportion of conti-

nental reference ancestry in publicly available summary

genetic data. We demonstrate the effectiveness of Summix,

including the ability to produce ancestry-adjusted AFs to

tailor analyses to less-studied populations, in over 5,000

simulation scenarios and in gnomAD v.2.1. Ultimately,

Summix and the accompanying R, Python, and Shiny

app software help to increase the efficacy and, importantly,

the equity of valuable publicly available resources, espe-

cially for understudied and admixed samples.
Material and methods

Summix
Estimating ancestry proportions

An observed single-nucleotide polymorphism (SNP) AF can be

described as a mixture of AFs across unobserved subgroups (e.g.,

continental ancestral populations).We estimate the group-specific

mixing proportions, pk, by minimizing the least-squares differ-

ence between vectors of N SNPs for the observed AF, AFobserved,

and the AF generated from a mixture of K reference ancestry

groups, AFref ; k, as shown in Equation 1.

minimize : f ðpÞ¼
 
AFobserved �

XK
k¼1

�
pk � AFref ;k

�!2

Subject to constraints : pk R0; k ¼ 1;.; K and
XK
k¼1

pk ¼ 1

(Equation 1)

This objective function is quadratic and, as such, is continuous,

convex, and easily differentiable; the inequality constraints are

linear. Hence, a feasible minimizer will fulfill the Karush-Kuhn-

Tucker (KKT) conditions for optimality. We use sequential

quadratic programming (SQP),19,20 a gradient-based, iterative al-

gorithm for constrained, nonlinear optimization, to efficiently es-

timate the proportion of each reference group. We obtain confi-

dence intervals (CIs) for the continental ancestry proportions by

using block bootstrapping as described below.

Ancestry-adjusted allele frequencies

Using estimated continental ancestry proportions, we update the

AFs in the observed data matching the continental ancestry pro-

portions of an individual or sample as follows in Equation 2. To es-

timate the ancestry-adjusted AF, K � 1 homogenous reference an-

cestries are used. The ancestry not used is indexed as l. In theory,

ancestry l can be any of the non-zero reference ancestry groups.

Here, we choose l to be the most common ancestry present in

the summary data.
The Americ
x¼ptarget;lbpl
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X
ksl

cpkAFref ;k

!
þ
X
ksl

ptarget;kAFref ;k

AF�
adjusted ¼

8>><>>:
0; x < 0
x; 0%x%1
1; x > 1

; (Equation 2)

where, AF�
adjusted is the ancestry-adjusted allele frequency, l is the

ancestry group for which the reference allele frequency data are

not used, k is ancestry group index, ptarget;kis population k ancestry

proportion for target individual or sample, bpk is estimated ancestry

proportion of population k for observed publicly available sum-

mary data,AFobserved is allele frequency for observed publicly avail-

able summary data (e.g., gnomAD), and AFref ;k is reference allele

frequency for ancestry k; K � 1 homogenous reference ancestries

are used.

Equation 2 can be used to estimate ancestry-adjusted AF for a

homogenous or admixed sample or individual with given ancestry

proportions. We evaluate both scenarios as described below.
Data
All data were on genome build GRCh37.

1000 Genomes and Indigenous American data

We used four continental ancestry groups from 1000 Genomes v.5

phase 3 20150502,20 African (AFR), East Asian (EAS), non-Finnish

European (EUR), and South Asian (SAS), and an Indigenous Amer-

ican (IAM) sample for the reference data. The IAM Affymetrix 6.0

data had been previously harmonized with the 1000 Genomes

data.21 1000 Genomes AFs were calculated as previously

described.22 IAMAFs were calculated with PLINK 1.9.We excluded

the admixed populations from the 1000 Genomes AFR continen-

tal ancestry: Americans of African ancestry in the southwestern

USA (ASW) and African Caribbeans in Barbados (ACB). Related in-

dividuals were also removed, resulting in sample sizes of 504 AFR,

504 EAS, 404 EUR, 489 SAS, and 43 IAM. We merged the 1000 Ge-

nomes and IAM data and kept the subset of SNPs in both datasets.

We limited further to bi-allelic non-palindromic SNPs with minor

allele frequency (MAF) > 1% in at least one continental ancestral

group, resulting in 613,298 SNPs.

gnomAD v.2.1

Variants fromgnomADv.2.1 (data accessedApril 2019)were limited

to bi-allelic and PASS, as defined by gnomAD,1 resulting in

13,742,683 and 196,606,976 SNPs in the exome and genome gno-

mAD samples, respectively. After we further limited to SNPs with

MAF > 1% in at least one gnomAD group and merged these with

the reference data, 9,763 and 582,156 SNPs remained in the exome

and genome data, respectively. As described further below, ancestry

proportionswere estimated forAfrican/AfricanAmerican (n¼8,128

exome; n ¼ 4,359 genome), American/Latinx (n ¼ 17,296 exome;

n ¼ 424 genome), other (n ¼ 3,070 exome; n ¼ 544 genome),

non-Finnish European (n ¼ 56,885 exome; n ¼ 7,718 genome),

East Asian (n ¼ 9,197 exome; n ¼ 780 genome), and South Asian

(n¼15,308exome)groupsandall subsets (i.e., controls,non-cancer,

non-neuro, and non-TopMED). Additionally, we used gnomAD

v.2.1 Ashkenazi Jewish (n ¼ 5,040 exome; n ¼ 145 genome) and

Finnish (n¼ 10,824 exome; n¼ 1,738 genome) to evaluate the per-

formance of Summix for mismatched reference data.

ClinVar

gnomAD v.2.1 AF and ClinVar (GRCh37/hg19) variants were

merged by chromosome, base pair, and alleles. For three variants,
an Journal of Human Genetics 108, 1270–1282, July 1, 2021 1271



there were multiple ClinVar allele IDs in the same position with

the same alleles. All duplicate positions were retained. After we

merged and restricted to ClinVar classifications of ‘‘uncertain path-

ogenicity’’ and ‘‘conflicting reports of pathogenicity,’’ 42 and 122

variants were present in the exome and genome data, respectively.

Ancestry-adjusted AFs were estimated for an African sample from

the African/African-American gnomAD control AFs with gnomAD

EUR as the reference sample.

The American College of Medical Genetics (ACMG) guidelines23

designate >5%MAF in a control population as stand-alone strong

evidence of a variant’s having benign impact for a rare Mendelian

disorder. As such, for the classifications of ‘‘uncertain Pathoge-

nicity’’ and ‘‘conflicting reports of pathogenicity,’’ we identified

variants where the ancestry-adjusted AF differed from the unad-

justed AF with respect to the MAF > 5% threshold. Additionally,

we identified variants with the classification ‘‘pathogenic,’’ ‘‘like-

ly_pathogenic,’’ or ‘‘pathogenic/likely_pathogenic’’ with either

adjusted or unadjusted AF above 5%.

Simulations
Using the 1000 Genomes as reference data, we simulated SNP ge-

notypes for all combinations and subsets of the five continental

populations. SNP genotypes were simulated with the rmultinom

R function with probability defined from the AFs for the continen-

tal reference ancestral populations assuming Hardy-Weinberg

Equilibrium. We chose ancestry proportions randomly within an

assigned proportion bin to ensure coverage across the range of

possible values, especially at the edges of the distribution: 0–

0.015, 0.010–0.055, 0.05–0.105, 0.10–0.255, 0.25–0.505. The

simulated proportion for the Kth ancestry group was chosen so

that the ancestry proportions summed to one.

Simulating across all combinations of continental ancestry

groups and the ancestry proportion bins resulted in 5,360 simula-

tion scenarios. We used 1,000 replicates within each simulation

scenario to assess accuracy and precision. For each simulation

replicate, we randomly sampled 100,000 SNPs.We define accuracy

as the difference between the mean estimated ancestry proportion

and simulated ancestry proportion. We define precision as the

standard deviation of the simulation replicates. The simulation

code is provided on the manuscript’s GitHub site.

Real data application
Estimating ancestry proportions

Continental reference ancestry proportions were estimated with

the summix R function for gnomAD v.2.1 African/African Amer-

ican, American/Latinx, East Asian, other, non-Finnish European,

and South Asian exome and genome including all subgroups

(e.g., controls, non-neuro). To estimate the ancestry group propor-

tions, we used the filtered datasets with 9,763 and 582,156 SNPs in

the exome and genome samples, respectively. To assess stability of

the estimates over different numbers of SNPs, we estimated the

ancestry proportions from 1,000 random samples of sets of N

SNPs: 10, 50, 100, 500, 1,000, 2,500, 5,000, 10,000, 50,000, and

100,000 for genomes and 10, 50, 100, 500, 1,000, 2,500, 5,000,

7,500, and 9,000 for exomes.

Block bootstrapping

We used block bootstrapping to estimate uncertainty for the

ancestry proportion estimates. We used the sex-averaged centi-

morgan (cM)map created fromBherer et al.24 to define 1 cMblocks

throughout the genome. We used the na.approx function8,25

from the zoo R package25 to linearly interpolate cM for SNPs in
1272 The American Journal of Human Genetics 108, 1270–1282, July
our dataset that were not observed in Bherer et al. This resulted in

3,357 1 cM blocks across the genome. Five and 129 SNPs in the

exomeandgenomedata, respectively, thatwere outside the genetic

regions contained in the Bherer et al. dataset were not linearly

interpolated. This resulted in 9,763 and 582,156 SNPs in 2,206

and 3,353 1 cM blocks for the exome and genome gnomAD sam-

ples, respectively. This final sample was used for all real data anal-

ysis. We used 1,000 bootstrap replicates to estimate 95% block

bootstrap CIs. The lower and upper CIs were estimated from the

2.5 and 97.5 percentiles of the block bootstrap distribution.

Estimating ancestry-adjusted allele frequencies

We estimated and assessed ancestry-adjusted AFs for two samples:

(1) an African sample (100% African) estimated from the African/

African American gnomAD AFs and (2) an admixed Peruvian sam-

ple with average ancestry proportions of 76.8% Indigenous Amer-

ican, 19.6% European, 2.7% African, and 0.9% East Asian ancestry

estimated from the American/Latinx gnomAD AFs. The continen-

tal ancestry proportions for the admixed Peruvian population

were estimated from a subset of unrelated individuals (n ¼ 85)

from the 1000 Genomes Peruvian sample via supervised ADMIX-

TURE.11 For both the African sample and the Peruvian sample,

ancestry-adjusted AFs were estimated with reference AF from

either 1000 Genomes or gnomAD. We used reference groups

with R2% estimated ancestry proportion in the observed gno-

mAD v.2.1 group and normalized the estimated ancestry propor-

tions to total 1. This resulted in K ¼ 2 ancestry groups for the Af-

rican/African American group and K ¼ 4 for the American/Latinx

group. For the African/African American group with K ¼ 2 refer-

ence groups, non-Finnish European reference AFs were used

(excluding African reference). For the Peruvian population where

K ¼ 4, non-Finnish European, African, and East Asian reference

AFs were used (excluding Indigenous American reference).We esti-

mated the Peruvian ancestry-adjusted AFs by using gnomAD non-

Finnish European and East Asian reference populations and esti-

mated ancestry-adjusted AFs for a 100% African ancestry from

the gnomAD African/African American reference group.

To assess the accuracy of the ancestry-adjusted estimates, we

compared the ancestry-adjusted and unadjusted gnomAD AFs to

1000 Genomes AFs for the target ancestral population (i.e., African

or Peruvian Latinx). For these comparisons, we filtered out vari-

ants that were called in fewer than 25% of the gnomAD group.

This removed 120 and 128 variants for African/African American

and American/Latinx gnomAD exome groups, respectively, and

8 and 11 variants for African/African American and American/Lat-

inx gnomAD genome groups, respectively. We calculated both the

absolute and relative difference as shown in Equation 3.

AbsoluteDifference¼ jAF� �1000GAFj

RelativeDifference¼ jAF� � 1000GAFj
1000GMAF

; (Equation 3)

where AF�is the ancestry-adjusted or unadjusted AF.

To test whether differences varied by adjustment group, we use a

linear mixed effects model with SNP and cM block as random ef-

fects with the lmer function from the lme4 package.26 We tested

all SNPs as well as within AF bins defined by the target 1000 Ge-

nomes reference ancestry (AF bin: <0.01, 0.01–0.02, 0.02–0.05,

0.05–0.1, 0.1–0.3, 0.3–0.5, 0.5–0.7, 0.7–0.9, 0.9–0.95, 0.95–0.98,

0.98–0.99, R0.99). Pairwise comparisons were adjusted for post-

hoc multiple testing with Tukey adjustment. We assessed agree-

ment between 1000 Genomes and ancestry-adjusted AFs or
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unadjusted AFs by using Lin’s concordance correlation coefficient

(Lin’s CCC)27,28 and 95% CIs estimated with the CCC function in

the DescTools R package v.0.99.38 29.
Summix versus ADMIXTURE ancestry estimates
We compared continental ancestry proportions from Summix to

estimates from ADMIXTURE11 by using individual-level data for

a sample of n ¼ 85 unrelated individuals from the Peruvian

1000 Genomes data. Estimates were obtained via supervised and

unsupervised ADMIXTURE with default settings as well as projec-

tion with the learned AFs from unsupervised ADMIXTURE of the

reference data. For both the unsupervised and supervised ADMIX-

TURE estimates, the AFR, EAS, EUR, and IAM reference individuals

were included along with the Peruvian individuals. Bootstrap 95%

CIs in ADMIXTURE were estimated with the -B command. Super-

vised estimates were used for all comparisons and further analyses.

To compare computing time between ADMIXTURE and Summix,

we ran the methods on a Dual Intel Xeon E5-2670v2 2.5 Ghz (10

core/20 thread) with 192GB DDR3-1600 ECC Registered Memory.
Reanalysis of PADI3
To demonstrate the utility of Summix’s ancestry-adjusted esti-

mates in case-control analysis using external controls, we reana-

lyzed data from Malki et al.6 Malki et al. used gnomAD v.2.1 Afri-

can/African American as controls in a case-control analysis to

show that PADI3 (MIM: 606755) is associated with central centrif-

ugal cicatricial alopecia (MIM: 618352) in women of African

ancestry.6 We estimated the ancestry-adjusted AF for PADI3 vari-

ants identified by Malki et al. for a sample with 100% African

ancestry. We estimated ancestry-adjusted allele counts (ACs) by

multiplying the ancestry-adjusted AF by the variant-specific allele

number. The number of individuals in gnomAD v.2.1 with at least

one minor allele was calculated as the number of minor alleles

minus the number of homozygotes. Using the case numbers re-

ported from their manuscript, we repeated the case-control anal-

ysis by using the original unadjusted gnomAD v.2.1 data and the

ancestry-adjusted gnomAD v.2.1 results for a homogeneous Afri-

can sample. As in Malki et al., we provide p values for both a

chi-square ðc2Þ test of independence and Fisher’s exact test.
Reanalysis of p.Phe508del
Nappo et al. use gnomAD v.2.1 to estimate the prevalence of CFTR

(MIM: 602421) variants defined as cystic fibrosis (CF [MIM:

219700])-causing or varying clinical consequence in non-Euro-

pean populations, including South Asian and African/African

American.16 To highlight Summix’s utility in providing more

precise AF adjusting for ancestry, we provide ancestry-adjusted

AF for a 100% African target sample for p.Phe508del

(c.1521_1523delCTT), the most common CF variant.
Sensitivity of ancestry estimates to reference data
We evaluated the sensitivity of Summix’s ancestry proportion esti-

mates tomismatches in the reference data in simulations and gno-

mAD v.2.1. Specifically, we compared the least-squares loss func-

tion value in scenarios where the reference data were known to

not represent the observed data well. For gnomAD v.2.1 exomes

and genomes, we used the five reference ancestries (i.e., AFR,

EAS, EUR, IAM, and SAS) to estimate the ancestry proportions

for Ashkenazi Jewish and Finnish, which are known to diverge

from European ancestry.
The Americ
Additionally, we simulated 5-way admixed populations by using

the five reference ancestries (i.e. AFR, EAS, EUR, IAM, and SAS) and

the rmultinom function in R as described above for other simula-

tions. For each simulation scenario, we held a specific reference

ancestry at a fixed proportion (i.e., 0, 0.01, 0.05, 0.1, 0.15, 0.2,

0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85,

0.9, 0.95, 0.99) and allowed the other four ancestry proportions

to be random with the constraint that the proportions sum to 1.

We removed the fixed ancestry from the reference panel and

used Summix to estimate the remaining four ancestry proportions.

We recorded the least-squares loss of the solution. For each fixed

ancestry and proportion combination, we performed 100 simula-

tion replicates.

Software and code
Summix is available in R and Python. The Python (v.3.7) package,

summixpy, contains two main Python scripts. The first function,

summix.py, estimates the proportions of reference ancestry groups

for an observed sample. The second function, adjAF.py, estimates

the ancestry-adjusted AF. The package contains example genetic

data and analysis presented in a Jupyter Notebook and is hosted

on GitHub.

The Summix R package enables both estimation of reference

ancestry groups via the summix function and ancestry-adjusted

AFs via the adjAF function. More details, including example data

and implementation, are available in our package, which is hosted

on Bioconductor v.3.13 or later and our GitHub site.

Shiny app
Within the Shiny app, users can estimate and visualize ancestry

proportions for three gnomAD ancestry groups (i.e., African/Afri-

can American, American/Latinx, and other) for both the exome

and genome data. The Shiny app is hosted on the University of

Colorado Denver servers (see web resources).
Results

Simulations

Summix achieved accuracy within 0.001% and precision

within 0.1% across all simulation scenarios (Tables S1–S5,

Figure 1, Figures S1–S4). Accuracy of the proportion esti-

mates was consistent across the range of simulatedmixture

proportions with a slight increase in bias near 0 and 1.

While bias and variability in the estimates was small for

all ancestral groups, AFR had the lowest variability fol-

lowed by IAM, EAS, EUR, and then SAS, which had the

highest variability across simulation replicates (Tables S1–

S5, Figure 1, Figures S1–S4). For simulation scenarios with

non-zero proportions simulated for all five ancestry

groups, the standard deviation was as follows: SDAFR ¼
4.31E�5, SDIAM ¼ 5.53E�5, SDEAS ¼ 7.58E�5, SDEUR ¼
9.18E�5, and SDSAS ¼ 1.21E�4. This trend was consistent

across all simulation scenarios.

Application to gnomAD

Estimating ancestry proportions

We estimated the proportion of reference continental

ancestry groups in gnomAD v.2.1 African/African Amer-

ican, American/Latinx, East Asian, other, non-Finnish
an Journal of Human Genetics 108, 1270–1282, July 1, 2021 1273



Figure 1. Simulation results for five ances-
tries
Accuracy is defined as the difference be-
tween the estimated ancestry proportions
and given ancestry proportions within sim-
ulations. We used five reference ancestries
to simulate genotypes of an admixed popu-
lation.
(A) Accuracy separated by ancestry.
(B) Accuracy separated by ancestry propor-
tion.
(C) Accuracy separated by both ancestry
and ancestry proportion.
European, and South Asian groups and all subgroups (e.g.,

controls, non-TopMED) for both the exome and genome

data (Table 1, Tables S6 and S7). As expected, the African/

African American groups have primarily AFR (>80%) and

EUR ancestry (�15%), most likely because of contribution

from African American individuals. The exome and

genome American/Latinx gnomAD groups had high pro-

portions of both EUR and IAM ancestry (i.e., >35%) and

ancestry proportion estimates between 1%–6% for the

other reference groups. Interestingly, >1% SAS ancestry

was estimated in both the exome and genome American/

Latinx gnomAD groups, perhaps because of misspecifica-

tion from a limited number of reference groups. The

exome and genome ‘‘other’’ gnomAD groups were primar-

ily EUR reference ancestry (>77%). The estimated refer-

ence proportions for non-Finnish Europeans and East

Asian were very homogeneous and had >96% EUR- and

100% EAS-estimated reference ancestries, respectively.

The South Asian gnomAD exome group had 85% esti-

mated SAS ancestry and �15% estimated EUR reference

ancestry as expected because of the known ancient admix-

ture events in the region.30–32

Despite large differences in sample sizes, the estimated

proportion of reference ancestry groups was similar (i.e.,

within 2%) between exome and genome samples for all

groups except American/Latinx where the exome and

genome estimates differed by >5% for the EUR and IAM

reference proportions. The reference ancestry proportion

estimates for the gnomAD v.2.1 subgroups (i.e., controls,

non-cancer, non-neuro, and non-TopMED) were mostly

similar; they were within �2% of each other and of the

overall gnomAD v.2.1 group estimates. The exception

was for the American/Latinx and ‘‘other’’ genome groups,

which sometimes varied by 5%–10%. These groups had

sample sizes (N < 600) and, thus, were most likely more
1274 The American Journal of Human Genetics 108, 1270–1282, July
susceptible to the inclusion or exclusion of subsamples of

individuals. Complete results are shown in Tables S6

and S7.

We evaluated Summix’s ability to estimate reference

ancestry proportions by using smaller numbers of

randomly chosen SNPs. We find that the ancestry propor-

tion estimates stay unbiased regardless of the number of

SNPs used to estimate ancestry, while the precision de-

creases as the number of SNPs decreases. The precision is

still fairly tight down to �500 SNPs, especially when esti-

mating the African/African American gnomAD samples

(exomes: SDAFR ¼ 0.0039, SDIAM ¼ 0.0052, SDEAS ¼
0.0054, SDEUR ¼ 0.0065, and SDSAS ¼ 0.0067). This sug-

gests that far fewer SNPs are most likely needed to arrive

at sample estimates of ancestry proportions (Figure 2,

Figure S5).

Ancestry-adjusted allele frequencies

For both exome and genome data, we estimated the

ancestry-adjusted AF for gnomAD African/African Amer-

ican for a target sample with 100% continental African

ancestry and for gnomAD American/Latinx for a target Pe-

ruvian sample with 76.8% Indigenous American, 19.6%

European, 2.7% African, and 0.9% East Asian ancestry pro-

portions. Compared to the unadjusted AFs, the ancestry-

adjusted AFs had significantly smaller absolute and relative

differences with the target group AF (Table 2, Tables S8 and

S9, p < 1E�16) regardless of reference data used (i.e., 1000

Genomes or gnomAD). The relative difference was greatest

at small MAFs, while the absolute difference increased as

AF increased, consistent with expectations. For SNPs with

an alternative AF > 0.9 in 1000 Genomes, the absolute

and relative difference between the unadjusted gnomAD

and target 1000 Genomes AFs was especially large. This is

most likely due to both a relatively small number of SNPs

in these groups and differences between 1000 Genomes
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Table 1. Estimated ancestry proportions for gnomAD groups (95% block bootstrap CI)

Ancestry group AFR EAS EUR IAM SAS

Genome

African/African American
(n ¼ 4,359)

0.825 (0.824, 0.825) 0.005 (0.004, 0.006) 0.157 (0.156, 0.158) 0.008 (0.008, 0.009) 0.005 (0.004, 0.006)

American/Latinx (n ¼ 424) 0.058 (0.057, 0.059) 0.038 (0.036, 0.041) 0.505 (0.502, 0.507) 0.380 (0.378, 0.382) 0.0194 (0.016, 0.023)

Other (n ¼ 544) 0.047 (0.046, 0.048) 0.034 (0.032, 0.036) 0.793 (0.790, 0.796) 0.043 (0.042, 0.045) 0.084 (0.080, 0.087)

Non-Finnish European
(n ¼ 7,718)

0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.964 (0.962, 0.967) 0.016 (0.015, 0.017) 0.020 (0.017, 0.022)

East Asian (n ¼ 780) 0.000 (0.000, 0.000) 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

South Asian (n ¼ 0) – – – – –

Exome

African/African American
(n ¼ 8,128)

0.840 (0.838, 0.842) 0.005 (0.001, 0.009) 0.146 (0.142, 0.149) 0.009 (0.006, 0.012) 0.000 (0.000, 0.006)

American/Latinx
(n ¼ 17,296)

0.0430 (0.039, 0.047) 0.049 (0.040, 0.059) 0.432 (0.423, 0.441) 0.463 (0.455, 0.471) 0.013 (0.000, 0.027)

Other (n ¼ 3,070) 0.034 (0.032, 0.037) 0.046 (0.041, 0.051) 0.780 (0.775, 0.787) 0.051 (0.047, 0.054) 0.089 (0.080, 0.098)

Non-Finnish European
(n ¼ 56,885)

0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.975 (0.969, 0.982) 0.008 (0.005, 0.012) 0.017 (0.009, 0.023)

East Asian (n ¼ 9,197) 0.000 (0.000, 0.000) 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000) 0.000 (0.000, 0.000)

South Asian (n ¼ 15,308) 0.002 (0.000, 0.004) 0.000 (0.000, 0.000) 0.150 (0.144, 0157) 0.002 (0.000, 0.005) 0.845 (0.838, 0.852)

Abbreviations: AFR, African continental ancestry group; EAS, East Asian continental ancestry group; EUR, European continental ancestry group; IAM, Indigenous
American continental ancestry group; SAS, South Asian continental ancestry group.
samples and the reference genome. The absolute and rela-

tive differences in SNPs with AF > 0.9 is considerably

reduced for the ancestry-adjusted AFs (Figures 3 and 4, Ta-

ble 2, Tables S8 and S9).

The ancestry-adjusted AFs using 1000 Genomes or gno-

mAD as reference data were very similar. In the exome

data, we observed no systematic significant absolute or

relative differences between reference datasets (i.e., gno-

mAD reference versus 1000 Genomes reference) with the

exception of relative difference for the African 0–0.01

bin. Most likely because of larger numbers of SNPs in the

genome data, we do see significant, albeit very small, dif-

ferences by reference ancestry between the ancestry-

adjusted AF and the AFs in the target 1000 Genomes sam-

ple (Tables S8 and S9). These differences, while statistically

significant, were 10 to 100 times smaller compared to the

unadjusted AF.

We used Lin’s CCC to estimate agreement between the

target sample and the gnomAD AF. In gnomAD exomes,

Lin’s CCC estimates were higher for the ancestry-adjusted

compared to the unadjusted AFs regardless of reference

data for both the African group (estimate [95% CI]: adj.

gnomAD_ref ¼ 0.9977 [0.9976, 0.9978]; adj. 1000G_ref ¼
0.9976 [0.9975, 0.9977]; unadj. ¼ 0.9866 [0.9862,

0.9870]) and the Peruvian group (adj. gnomAD_ref ¼
0.9689 [0.9676, 0.9702]; adj. 1000G_ref ¼ 0.9691

[0.9678, 0.9704]; unadj. ¼ 0.9438 [0.9417, 0.9458]). We

found similar results for the gnomAD genome data. Both

the ancestry-adjusted and unadjusted AFs differ more for
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the gnomAD American/Latinx group compared to the

target 1000 Genomes Peruvian AFs than for the African

comparison. This is perhaps due to a larger number of

reference ancestry groups, more heterogeneity in Latinx

compared to African American samples, or better represen-

tation in the reference data for African/African American

than American/Latinx.

Within the gnomAD genome data, we identified some

SNPs with a large mismatch between 1000 Genomes and

gnomAD AF (Figures S6–S9). These SNPs appear to be

mostly multi-allelic with one or more indels as the addi-

tional alleles (Tables S10 and S11). Additionally, the

ancestry-adjusted AF is sometimes below 0 or above 1 (Ta-

ble S12); for these variants, we rounded to 0 and 1, respec-

tively. We recommend caution when using ancestry-

adjusted AF estimates for multi-allelic variants or variants

with an ancestry-adjusted AF close to or equal to 0 or 1.

More research and potentially external validation are

most likely needed to estimate the true AF of all alleles

present.

Summix versus ADMIXTURE ancestry estimates

We estimated ancestry proportions for the 1000 Genomes

Peruvian sample of 85 unrelated individuals by using AFs

with Summix and individual-level data with ADMIXTURE.

Assuming four reference ancestry groups, we estimate

0.033 AFR (0.032, 0.035), 0.035 EAS (0.031, 0.039), 0.209

EUR (0.206, 0.212), and 0.723 IAM (0.719, 0.726) for Sum-

mix compared to 0.027 AFR (0.018, 0.035), 0.010 EAS
an Journal of Human Genetics 108, 1270–1282, July 1, 2021 1275



Figure 2. Precision in ancestry estimates for African/African
American and American/Latinx gnomAD groups by number of
SNPs
Number of SNPs (x axis) and estimated ancestry proportion (y
axis) for 1,000 replicates.
(A) African/African American exome.
(B) American/Latinx exome.
(0.003, 0.017), 0.196 EUR (0.166, 0.226), and 0.768 IAM

(0.736, 0.799) for supervised ADMIXTURE. The ADMIX-

TURE ancestry estimates for unsupervised and supervised

were nearly identical (Table S13). Overall, the estimates

from Summix and ADMXITURE are similar and the 95%

CIs overlap for AFR and EUR and are within 2% for EAS

and IAM. The slight difference between Summix and

ADMIXTURE supervised estimates may be due to reduced

ability to distinguish between EAS and IAM. Indeed, the es-

timates between Summix and ADMIXTURE projection are

nearly identical (Table S13), indicating that the minor dif-

ferences between supervised ADMIXTURE and Summix

are most likely due to using AFs versus individual-level

data. The similarity between Summix estimates and

ADMIXTURE estimates with individual-level data further

supports Summix’s ability to estimate ancestry proportions

from summary data without the need for individual-level

data. Further, without the need to use individual reference

data or estimate individual level ancestry, Summix is much

more efficient solving in seconds, whereas ADMIXTURE

takes a minimum of 24 minutes (Table S13).

Reanalysis of PADI3

Summix can be used to estimate and adjust for ancestry in

analyses that use gnomAD and other summary data as

external controls. As an exemplar, we repeated the case-

control analysis of PADI3 from Malki et al.6 We found

the p values were higher for the ancestry-adjusted allele

counts (ACs) (chi-squared p value ¼ 0.114, Fisher’s exact

test p value¼ 0.101) compared to the unadjusted gnomAD

v.2.1 African/African American ACs (chi-squared p value ¼
0.029, Fisher’s exact test p value ¼ 0.031) (Tables S14 and
1276 The American Journal of Human Genetics 108, 1270–1282, July
S15). As expected, this shows that association results are

not robust to differences in ancestry. It is likely that the

cases used by Malki et al.6 were not 100% African ancestry.

Summix could be used to estimate ancestry-adjusted AC in

gnomAD given the exact ancestry proportions in the cases.

We expect the p values of association would most likely lie

between the unadjusted and adjusted p values provided

given that the proportion of African ancestry is most likely

between gnomAD unadjusted (0.852) and adjusted (1).

Reanalysis of p.Phe508del

To evaluate the prevalence of CF variants in non-European

ancestral populations, Nappo et al. report the AF for CFTR

variants with causal or varying clinical consequence in

non-European ancestral groups from gnomAD v.2.1, such

as African/African American and South Asian.16 As another

exemplar of the utility for ancestry-adjusted AF, we esti-

mated the adjusted AF for the most common CF variant,

p.Phe508del, for the African/African American group

assuming 100% African ancestry. As expected, given the

higher AF in the non-Finnish European ancestry, the

ancestry-adjusted AF is smaller than the unadjusted AF for

both exome and genome African/African American groups

(Table S16). This indicates that the prevalence of p.Phe508-

del may be lower in homogeneous African ancestry groups

than the admixed African American group in gnomAD.

ClinVar

As an exemplar for the potential utility of ancestry-adjusted

AF in clinical settings, we compare the ancestry-adjusted AF

for 100% African ancestry to the unadjusted AF for the

gnomAD African/African American sample for a subset of

ClinVar variants labeled as pathogenic, uncertain pathoge-

nicity, or conflicting reports (material and methods).

Based on previous ACMG guidelines,23 we focused on

variants labeled as either ‘‘uncertain pathogenicity’’ or

‘‘conflicting reports of pathogenicity.’’ We identified 68

unique ClinVar variants at 67 positions on the exome

and genome (including 11 variants that were identified

on both the exome and genome) where the ancestry-

adjusted AF was above 5% and unadjusted AF was below

5% and 42 variants at 41 positions where the ancestry-

adjusted AF was below 5% and the unadjusted AF was

above (five of these variants were identified on both the

exome and genome). Overall, we find minor differences

of less than 0.05 between ancestry-adjusted and unad-

justed AF. Eleven variants had differences greater than

0.05 in AF (Table S17). Some of these variants most likely

warrant further follow up.

We identified 29 variants with unique ClinVar IDs (18 in

the genome data, two in the exome data, and nine in both

the exome and genome data) listed as pathogenic or likely-

pathogenic in ClinVAR with AF > 5% for either the unad-

justed or adjusted gnomAD African/African American sam-

ples. All but three of these variants had adjusted and unad-

justed AF > 5%, and most variants were very common

(e.g., MAF > 20%) (Table S18). Further inspection of these
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Table 2. Absolute and relative difference between unadjusted and adjusted gnomAD AF and target sample in the exome data

Means (95% CI) p value

unadj (1) anc-adj 1000G ref (2) anc-adj gnomAD ref (3) 1 versus 2 1 versus 3 2 versus 3

AFR absolute 0.027 (0.0264, 0.0271) 0.012 (0.011, 0.012) 0.011 (0.011, 0.012) <1E�16 <1E�16 0.123

AFR relative 0.559 (0.536, 0.583) 0.154 (0.130, 0.178) 0.139 (0.115, 0.162) <1E�16 <1E�16 0.545

AMR absolute 0.046 (0.045, 0.047) 0.0345 (0.034, 0.036) 0.035 (0.034, 0.036) <1E�16 <1E�16 0.989

AMR relative 0.532 (0.517, 0.546) 0.361 (0.347, 0.375) 0.363 (0.349, 0.378) <1E�16 <1E�16 0.926

Abbreviations: AFR, African/African American gnomAD group; AMR, American/Latinx gnomAD group; unadj, unadjusted allele frequencies; anc-adj 1000G ref,
ancestry-adjusted allele frequencies using 1000 Genomes reference data; anc-adj gnomAD ref, ancestry-adjusted allele frequencies using gnomAD reference data.
variants indicated little to no support for pathogenicity.

Most of these (n ¼ 24) do not have assertion criteria pro-

vided and 13 were submitted to the ClinVar repository

well before the 2015 update to the ACMG guidelines

prompted by increased use of high-throughput

sequencing.33 These variants may warrant further review.

One of the variants identified as pathogenic and having

a high AF is rs429358, one of two variants that defines

the APOE-e4 (MIM: 107741) allele that incurs an increased

risk of Alzheimer disease (MIM: 607822). The high AF for

rs429358 observed in the gnomAD African/African Amer-

ican group is expected because AF > 0.1 has been observed

in samples of African and African American individuals2,34.

The APOE-e4 allele confers increased risk of Alzheimer dis-

ease in various ancestries, including European35 and Afri-

can,36,37 although heterogeneity is observed in effect size

and AF across ancestries.38

Sensitivity of ancestry estimates to reference data

In simulations, we find that the least-squares loss increases

as the proportion of fixed continental ancestry not in the

reference data increases. This increase in least-squares

loss is seen for all continental reference ancestry groups

removed from the reference data. However, continental

reference ancestry groups that are known to be more

distinct from other ancestries (e.g., AFR) result in larger

loss, indicating a poorer fit of the model when these ances-

tries are not in the reference data (Figure S12). Based on

these simulations, we find a loss above 0.5/1,000 SNPs in-

dicates a moderate amount of missing ancestry and a loss

above 1.5/1,000 SNPs most likely indicates a substantial

amount of missing ancestry. Similarly, in gnomAD v.2.1

data, we find larger least-squares loss when estimating

the continental ancestry proportions for Ashkenazi Jewish

(loss/1,000 SNPs ¼ 2.05 exome and 2.46 genome) and

Finnish (loss/1,000 SNPs ¼ 2.62 exome and 2.62 genome)

groups, which are known to not be represented well by the

five continental ancestry groups used here (i.e., AFR, EAS,

EUR, IAM, and SAS) (Table S19).

Given these results, we recommend using the following

loss thresholds to identify goodness of fit: <0.5 per 1,000

SNPs indicates a good fit, between 0.5 and 1.5 indicates a

moderate fit, and >1.5 indicates the reference data are a

poor fit. We do not recommend estimating ancestry-

adjusted AF when the final loss/1,000 SNPs > 1.5. By these
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metrics, we achieve good fit for seven out of the eleven

gnomAD v.2.1 groups for which we estimate ancestry pro-

portions in Table 1 and moderate fit for four (American/

Latinx exome ¼ 1.080 and genome¼ 0.824, other genome

¼ 0.680, and non-Finnish European genome ¼ 0.500) (Ta-

ble S19). Although we believe these thresholds will be good

rules of thumb, loss per 1,000 SNPs is a continuum where

higher values indicate poorer fit. Thus, even though both

non-Finnish European genome and American/Latinx

exome data are within the moderate fit range, the non-

Finnish European genome is better represented by the

reference data than the American/Latinx exome (loss/

1,000 SNPs ¼ 0.5 and 1.080, respectively). While similar

loss values between the same exome and genome gnomAD

groups suggest these thresholds should be reasonable for

sequencing studies with an MAF > 1% filter such as that

used here (material and methods), the thresholds may

need to be reevaluated for fine-scale or array data.
Discussion

Here, we describe Summix, a fast, accurate, and precise

method to estimate and adjust for population structure

within publicly available genetic summary data. We eval-

uate Summix in over 5,000 simulation scenarios, showing

the accuracy and precision are within 0.001% and 0.1%,

respectively. In gnomAD, we find heterogeneous ancestry

similar to what is expected in African/African American,

American/Latinx, other, and South Asian groups. We pro-

vide ancestry proportion estimates for all gnomAD groups

and subgroups as well as ancestry-adjusted AFs for an Afri-

can sample and a Peruvian sample for others to use.

Using the estimated proportion of continental ancestry

groups, we produce ancestry-adjusted AFs for target sam-

ples with either continental African ancestry or Peruvian

ancestry. When comparing to a sample with matching

ancestry, we find that the unadjusted AFs differ signifi-

cantly more than the ancestry-adjusted AFs regardless of

reference ancestry data used (i.e., gnomAD versus 1000 Ge-

nomes). The African ancestry-adjusted AFs aremore similar

to the target 1000 Genomes African AFs than the Peruvian

ancestry-adjusted AFs are to the target 1000 Genomes Pe-

ruvian sample. The increased dissimilarity for the Peruvian

sample may be due to more than two predominant
an Journal of Human Genetics 108, 1270–1282, July 1, 2021 1277



Figure 3. Ancestry-adjusted versus unad-
justed allele frequency for gnomAD Afri-
can/African American exomes for a target
sample with African ancestry
Ancestry-adjusted AF was estimated for a
target sample with 100% African ancestry
via gnomAD (dark purple) or 1000 Ge-
nomes (light purple) non-Finnish Euro-
pean as reference and compared to unad-
justed AF (grey) for 9,710 SNPs.
(A) Ancestry proportions for gnomAD Afri-
can/African American exomes (AFR ¼
0.852, EUR ¼ 0.148) and target sample
(AFR ¼ 1).
(B) Absolute difference between target sam-
ple AF (1000 Genomes African ancestry)
and unadjusted or ancestry-adjusted gno-
mAD AF by 1000 Genomes AF category.
(C) Relative difference between target 1000
Genomes African ancestry AF and unad-
justed or ancestry-adjusted gnomAD AF
by 1000 Genomes AF category; unzoomed
versions of (B) and (C) are available in the
supplemental information (Figure S10).
(D) Scatter plot of target sample 1000 Ge-
nomes AF (y axis) and unadjusted (left),
ancestry-adjusted with gnomAD reference
(center), and ancestry-adjusted with 1000
Genomes reference (right) gnomAD AF (x
axis).
reference ancestry groups or ancestral differences

(including admixture) between gnomAD American/Lat-

inx, the reference data, and 1000 Genomes Peruvian.

Although the AFs of putative causal variants from a

breadth of ancestral populations in public databases are

useful for assessing evidence for clinical pathogenicity of

a genetic variant, checking the AF in an ancestral sample

that matches the ancestry of the person with the disease

is most useful. Summix can be used to provide ancestry-

adjusted AFs to precisely match ancestry, increasing clin-

ical utility of public datasets that may not have an ancestry

that matches the patient. Additionally, Summix can pro-

duce ancestry-adjusted AFs matching the ancestry propor-

tions for an external control sample. The use of gnomAD as

a comparison dataset is increasingly common. Studies

have used gnomAD as either the primary or secondary

external control sample. While many of these studies are

in European39–41 or East Asian42,43 ancestral groups, which

we find to contain little to no other continental reference

ancestry, some studies use gnomAD groups that contain

admixture (e.g., African/African American, American/Lat-

inx, and South Asian) for comparison without adjusting

for population structure.6,16,44

We evaluate the potential utility of Summix’s ancestry-

adjusted AF by producing ancestry-adjusted AFs for Clin-

Var variants, for the CF variant p.Phe508del in CFTR,

and for a case-control analysis of PADI3, a gene where gno-

mAD was used as an external control sample to identify as-
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sociation with central centrifugal cicatricial alopecia in

women with African ancestry. Although we find mostly

minor discrepancies in the unadjusted and ancestry-

adjusted AFs, we note that these differences can affect evi-

dence of association for case-control analysis, as we

demonstrate in PADI3, and prioritization of putative causal

variants for follow up. For instance, under- or over-estima-

tion of the frequency of clinically relevant or potentially

relevant variants, e.g., p.Phe508del in CFTR or ClinVar var-

iants, in certain ancestral populations could have clinical

implications, such as when prioritizing variants to use for

a screening tool. This emphasizes the importance of

matching by or adjusting for ancestry differences when-

ever possible.

Here, we estimate genome-wide continental ancestry

proportions. Although the mean local ancestry propor-

tions for a sample often approach genome-wide ancestry

proportions,45 there may exist regions of the genome,

e.g., regions of selection, where the local ancestry for the

sample differs substantially from genome-wide ancestry

proportions.46,47 We expect that the ancestry-adjusted AF

estimates may be less accurate in regions where the average

local ancestry proportions differ from the genome-wide es-

timates. Our results suggest that Summix can estimate

ancestry proportions accurately, although much less pre-

cisely, by using a relatively small number of randomly cho-

sen SNPs (e.g., �100). This suggests that Summix may be

able to estimate the proportion of local continental
1, 2021



Figure 4. Ancestry-adjusted versus un-
adjusted AF for gnomAD American/Latinx
exomes for a target sample of Peruvian
ancestry
Ancestry-adjusted AF was estimated for a
target Peruvian sample via gnomAD (dark
green) or 1000 Genomes (light green)
East Asian, European, and African as refer-
ence ancestral populations and compared
to unadjusted AF (grey) for 8,633 SNPs.
(A) Normalized ancestry proportions esti-
mated for gnomAD American/Latinx
exomes (purple, AFR ¼ 0.044; blue, EAS
¼ 0.049; orange, EUR ¼ 0.438; green,
IAM ¼ 0.469) and target Peruvian ancestry
proportions (purple, AFR ¼ 0.028; blue,
EAS ¼ 0.027; orange, EUR ¼ 0.199; green,
IAM ¼ 0.746).
(B) Absolute difference between target
1000 Genomes Peruvian ancestry AF and
unadjusted or ancestry-adjusted gnomAD
AF by 1000 Genomes AF category.
(C) Relative difference between target 1000
Genomes Peruvian ancestry AF and unad-
justed or ancestry-adjusted gnomAD AF
by 1000 Genomes AF category; unzoomed
versions of (B) and (C) are available in the
supplemental information (Figure S11).
(D) Scatter plot of target 1000 Genomes AF
(y axis) and unadjusted (left), ancestry-
adjusted with gnomAD reference (center),
and ancestry-adjusted with 1000 Genomes
reference (right) gnomAD AF (x axis).
ancestry. Here, we evaluate subsets of randomly chosen

SNPs, albeit reflecting genome-wide coverage. It could be

that using ancestry informative markers (AIMs)48 or

removing uninformative markers could increase the preci-

sion of Summix further enabling the estimation of local

ancestry proportions.

There are several drawbacks to our current method and

implementation. First, our method is currently only able

to estimate the proportion of provided reference ancestry

groups. We recommend the user include all expected

ancestral populations in the reference dataset. Using

least-squares loss per 1,000 SNPs as a measure of fit, we pro-

vide guidance as to how well the reference data matches

the observed summary data. A value below 0.5 loss/1,000

SNPs indicates good fit, between 0.5 to 1.5 indicates mod-

erate fit, and above 1.5 indicates poor fit. We do not recom-

mend estimating ancestry-adjusted AF when the reference

data are a poor fit. These thresholds are for sequencing

studies using continental reference ancestry data. The

thresholds will most likely need to be re-evaluated for

other applications, such as estimation of fine-scale

ancestry proportions and genome-wide association study

(GWAS) arrays. Second, here we only evaluate the ability

of Summix to estimate five broad continental ancestries.

We are actively working on an extension to identify and es-

timate the proportion of ancestry not in the reference data

and are evaluating the performance of Summix on a

broader reference panel, including fine-scale ancestry.
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Lastly, differences in ancestry is not the only aspect of pub-

lic databases that can cause confounding in analyses using

external public controls. Differences in sequencing tech-

nology and computational variant calling pipelines can

also cause biases in AFs due to non-exchangeability of indi-

viduals. Manymethods have been and are being developed

to adjust for this bias when using external controls.3–5,49,50

There are many extensions and applications for Summix

beyond those evaluated here. First, Summix can be used

with any reference ancestry data, needing only AFs. While

we provide ancestry-adjusted AFs for a sample, the

ancestry-adjusted AFs could be used for individuals,

providing potential utility in the clinic. Summix has the

potential to be applied to other summary datasets where

AFs are provided or can be derived, such as from GWAS

summary statistics, which are widely available online.51

While we found least-squares loss to perform well in our

simulations and application to real data, other objective

functions, such as the log likelihood, may be optimal, espe-

cially in the context of fine-scale ancestry. Lastly, Summix

has similarities to deconvolution methods used in single-

cell and other omics data types,52–54 suggesting paths of

future development and application.

We provide an R package, Python function, Shiny app,

and GitHub site to encourage reproducibility, broad use,

and further development of our method. We hope that

the methods presented here will be used and extended to

improve the utility of valuable publicly available resources,
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especially for individuals and studies with admixed or

understudied ancestry.
Data and code availability

Code, final merged gnomAD and 1000 Genomes data, and

ancestry-adjusted AF results are available at https://github.com/

hendriau/Summix_manuscript. Public data used: gnomAD v.2

data were downloaded from https://gnomad.broadinstitute.org/

downloads on October 11, 2018; 1000 Genomes data were down-

loaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/ on May

31, 2018; IAM Affymetrix 6.0 data were downloaded from ftp.

1000genomes.ebi.ac.uk/vol1/ftp/technical/working/

20130711_native_american_admix_train on October 11, 2018;

and ClinVar data were downloaded from https://ftp.ncbi.nlm.

nih.gov/pub/clinvar/vcf_GRCh37/ on September 25, 2020.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.05.016.
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26. Bates, D., Mächler, M., Bolker, B., andWalker, S. (2015). Fitting

Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–

48.

27. Watson, P.F., and Petrie, A. (2010). Method agreement anal-

ysis: a review of correct methodology. Theriogenology 73,

1167–1179.

28. Lin, L.I. (1989). A concordance correlation coefficient to eval-

uate reproducibility. Biometrics 45, 255–268.

29. Signorell, A., Aho, K., Anderegg, N., Aragon, T., Arppe, A., Bad-

deley, A., Bolker, B., Caeiro, F., Champely, S., Chessel, D., et al.

(2018). DescTools: Tools for descriptive statistics. (R Package

Version 0.99.24).

30. Nakatsuka, N., Moorjani, P., Rai, N., Sarkar, B., Tandon, A., Pat-

terson, N., Bhavani, G.S., Girisha, K.M., Mustak, M.S., Sriniva-

san, S., et al. (2017). The promise of discovering population-

specific disease-associated genes in South Asia. Nat. Genet.

49, 1403–1407.

31. Narasimhan, V.M., Patterson, N., Moorjani, P., Rohland, N.,

Bernardos, R., Mallick, S., Lazaridis, I., Nakatsuka, N., Olalde,

I., Lipson, M., et al. (2019). The formation of human popula-

tions in South and Central Asia. Science 365, eaat7487.

32. Reich, D., Thangaraj, K., Patterson, N., Price, A.L., and Singh,

L. (2009). Reconstructing Indian population history. Nature

461, 489–494.

33. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Fos-

ter, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., et al.

(2015). Standards and guidelines for the interpretation of

sequence variants: a joint consensus recommendation of

the American College of Medical Genetics and Genomics

and the Association for Molecular Pathology. Genet. Med.

17, 405–424.

34. Klarin, D., Damrauer, S.M., Cho, K., Sun, Y.V., Teslovich, T.M.,

Honerlaw, J., Gagnon, D.R., DuVall, S.L., Li, J., Peloso, G.M.,
The Americ
et al. (2018). Genetics of blood lipids among �300,000

multi-ethnic participants of the Million Veteran Program.

Nat. Genet. 50, 1514–1523.

35. Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull,

W.A., Mayeux, R., Myers, R.H., Pericak-Vance, M.A., Risch,

N., van Duijn, C.M.; and APOE and Alzheimer Disease Meta

Analysis Consortium (1997). Effects of age, sex, and ethnicity

on the association between apolipoprotein E genotype and

Alzheimer disease. A meta-analysis. JAMA 278, 1349–1356.

36. Graff-Radford, N.R., Green, R.C., Go, R.C.P., Hutton, M.L.,

Edeki, T., Bachman, D., Adamson, J.L., Griffith, P., Willis,

F.B., Williams, M., et al. (2002). Association between apolipo-

protein E genotype and Alzheimer disease in African Amer-

ican subjects. Arch. Neurol. 59, 594–600.

37. Logue, M.W., Schu, M., Vardarajan, B.N., Buros, J., Green,

R.C., Go, R.C.P., Griffith, P., Obisesan, T.O., Shatz, R., Boren-

stein, A., et al.; Multi-Institutional Research on Alzheimer Ge-

netic Epidemiology (MIRAGE) Study Group (2011). A compre-

hensive genetic association study of Alzheimer disease in

African Americans. Arch. Neurol. 68, 1569–1579.

38. Blue, E.E., Horimoto, A.R.V.R., Mukherjee, S., Wijsman, E.M.,

and Thornton, T.A. (2019). Local ancestry at APOE modifies

Alzheimer’s disease risk in Caribbean Hispanics. Alzheimers

Dement. 15, 1524–1532.

39. Marenne, G., Hendricks, A.E., Perdikari, A., Bounds, R., Payne,

F., Keogh, J.M., Lelliott, C.J., Henning, E., Pathan, S., Ashford,

S., et al.; INTERVAL, UK10K Consortium (2020). Exome

Sequencing Identifies Genes and Gene Sets Contributing to

Severe ChildhoodObesity, Linking PHIP Variants to Repressed

POMC Transcription. Cell Metab. 31, 1107–1119.e12.

40. Diez-Fairen, M., Makarious, M.B., Bandres-Ciga, S., Blauwen-

draat, C.; and International Parkinson’s Disease Genomics

Consortium (IPDGC) (2021). Assessment of LIN28A variants

in Parkinson’s disease in large European cohorts. Neurobiol.

Aging 100, 118.e1–118.e3.

41. Yuan, J.-H., Schulman, B.R., Effraim, P.R., Sulayman, D.-H., Ja-

cobs, D.S., and Waxman, S.G. (2020). Genomic analysis of 21

patients with corneal neuralgia after refractive surgery. Pain

Rep. 5, e826.

42. Liu, X., Chen, W., Li, W., Priest, J.R., Fu, Y., Pang, K., Ma, B.,

Han, B., Liu, X., Hu, S., and Zhou, Z. (2020). Exome-Based

Case-Control Analysis Highlights the Pathogenic Role of

Ciliary Genes in Transposition of the Great Arteries. Circ.

Res. 126, 811–821.

43. Li, C., Huang, Q., Yang, R., Guo, X., Dai, Y., Zeng, J., Zeng, Y.,

Tao, L., Li, X., Zhou, H., and Wang, Q. (2020). Targeted next

generation sequencing of nine osteoporosis-related genes in

the Wnt signaling pathway among Chinese postmenopausal

women. Endocrine 68, 669–678.

44. Lu, H.-M., Li, S., Black, M.H., Lee, S., Hoiness, R., Wu, S.,

Mu, W., Huether, R., Chen, J., Sridhar, S., et al. (2019).

Association of Breast and Ovarian Cancers With Predisposi-

tion Genes Identified by Large-Scale Sequencing. JAMA

Oncol. 5, 51–57.

45. Montana, G., and Pritchard, J.K. (2004). Statistical tests for

admixture mapping with case-control and cases-only data.

Am. J. Hum. Genet. 75, 771–789.

46. Zhou, Q., Zhao, L., and Guan, Y. (2016). Strong Selection at

MHC in Mexicans since Admixture. PLoS Genet. 12,

e1005847.

47. Hodgson, J.A., Pickrell, J.K., Pearson, L.N., Quillen, E.E., Prista,

A., Rocha, J., Soodyall, H., Shriver, M.D., and Perry, G.H.
an Journal of Human Genetics 108, 1270–1282, July 1, 2021 1281

http://refhub.elsevier.com/S0002-9297(21)00221-4/sref19
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref19
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref19
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref20
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref20
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref20
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref20
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref21
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref21
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref21
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref21
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref21
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref22
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref22
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref22
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref22
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref22
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref23
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref23
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref23
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref23
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref23
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref23
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref23
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref24
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref25
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref25
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref26
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref26
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref26
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref27
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref27
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref27
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref28
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref28
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref29
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref29
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref29
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref29
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref30
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref31
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref31
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref31
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref31
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref32
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref32
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref32
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref33
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref34
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref35
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref36
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref36
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref36
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref36
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref36
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref37
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref37
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref37
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref37
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref37
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref37
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref38
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref38
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref38
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref38
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref39
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref39
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref39
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref39
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref39
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref39
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref40
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref41
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref41
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref41
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref41
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref42
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref42
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref42
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref42
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref42
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref43
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref43
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref43
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref43
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref43
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref44
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref45
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref45
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref45
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref46
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref46
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref46
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref47
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref47


(2014). Natural selection for the Duffy-null allele in the

recently admixed people of Madagascar. Proc. Biol. Sci. 281,

20140930.

48. Brown, R., and Pasaniuc, B. (2014). Enhanced methods for

local ancestry assignment in sequenced admixed individuals.

PLoS Comput. Biol. 10, e1003555.

49. Jiang, L., Jiang, H., Dai, S., Chen, Y., Song, Y., Tang, C.S.-M.,

Wang, B., Garcia-Barcelo, M.-M., Tam, P., Cherny, S.S., et al.

(2020). Deviation from baseline mutation burden provides

powerful and robust rare-variants association test for complex

diseases. bioRxiv. https://doi.org/10.1101/2020.07.04.186619.

50. Li, Y., and Lee, S. (2020). Novel score test to increase power in

association test by integrating external controls. Genet. Epide-

miol. 44, 293–304.

51. Buniello, A., MacArthur, J.A.L., Cerezo, M., Harris, L.W., Hay-

hurst, J., Malangone, C., McMahon, A., Morales, J., Mountjoy,
1282 The American Journal of Human Genetics 108, 1270–1282, July
E., Sollis, E., et al. (2019). The NHGRI-EBI GWAS Catalog of

published genome-wide association studies, targeted arrays

and summary statistics 2019. Nucleic Acids Res. 47 (D1),

D1005–D1012.

52. Gong, T., and Szustakowski, J.D. (2013). DeconRNASeq: a sta-

tistical framework for deconvolution of heterogeneous tissue

samples based on mRNA-Seq data. Bioinformatics 29, 1083–

1085.

53. Hao, Y., Yan, M., Heath, B.R., Lei, Y.L., and Xie, Y. (2019). Fast

and robust deconvolution of tumor infiltrating lymphocyte

from expression profiles using least trimmed squares. PLoS

Comput. Biol. 15, e1006976.

54. Racle, J., de Jonge, K., Baumgaertner, P., Speiser, D.E., and Gfel-

ler, D. (2017). Simultaneous enumeration of cancer and im-

mune cell types from bulk tumor gene expression data. eLife

6, e26476.
1, 2021

http://refhub.elsevier.com/S0002-9297(21)00221-4/sref47
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref47
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref47
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref48
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref48
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref48
https://doi.org/10.1101/2020.07.04.186619
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref50
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref50
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref50
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref51
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref52
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref52
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref52
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref52
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref53
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref53
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref53
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref53
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref54
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref54
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref54
http://refhub.elsevier.com/S0002-9297(21)00221-4/sref54

	Summix: A method for detecting and adjusting for population structure in genetic summary data
	Introduction
	Material and methods
	Summix
	Estimating ancestry proportions
	Ancestry-adjusted allele frequencies

	Data
	1000 Genomes and Indigenous American data
	gnomAD v.2.1
	ClinVar

	Simulations
	Real data application
	Estimating ancestry proportions
	Block bootstrapping
	Estimating ancestry-adjusted allele frequencies

	Summix versus ADMIXTURE ancestry estimates
	Reanalysis of PADI3
	Reanalysis of p.Phe508del
	Sensitivity of ancestry estimates to reference data
	Software and code
	Shiny app

	Results
	Simulations
	Application to gnomAD
	Estimating ancestry proportions
	Ancestry-adjusted allele frequencies

	Summix versus ADMIXTURE ancestry estimates
	Reanalysis of PADI3
	Reanalysis of p.Phe508del
	ClinVar
	Sensitivity of ancestry estimates to reference data

	Discussion
	Data and code availability
	Supplemental information
	Acknowledgments
	Declaration of interests
	Web resources
	References


