Insights into population history from a high coverage Neandertal genome. D. Reich1, for.the. Neandertal Genome Consortium2 1) Harvard Medical School, Department of Genetics, 77 Ave. Louis Pasteur, Boston MA 02115 USA; 2) Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103 Germany.

   We have sequenced to about 50-fold coverage a genome sequence from about 40 mg of a bone found in Denisova Cave in Southern Siberia. The genome of this female is much more closely related to the low-coverage Neandertal genomes from Croatia, Spain, Germany and the Caucasus than to the genome of archaic Denisovans, a sister group of Neandertals, and provides unambiguous evidence that both Neandertals and Denisovans inhabited the Altai Mountains in Siberia. The high-coverage Neandertal genome, combined with our earlier sequencing of a high quality Denisova genome, allows novel insights about the population history of archaic humans:
    We document recent inbreeding in this Altai Neandertal. The inbreeding coefficient of about 1/8 corresponds to about the homozygosity that would be expected from a mating of half siblings.
    The Altai Neandertal genome shares almost seven percent more derived alleles with present-day Africans than does the Denisova genome. This means that the Denisovans derived a proportion of their ancestry from a very archaic human lineage, and the amount of this ancestry they inherit is larger than in Neandertals.
    The Denisovan genome is affected by major recent gene flow from an Altai-related Neandertal.
    To further characterize the variation among Neandertals we sequenced the genome of a Neandertal from the Caucasus to about 0.5-fold coverage. Comparisons to present-day genomes show that the Neandertals who contributed genes to present-day non-Africans were more closely related to this Caucasian Neandertal than to the Neandertals we sequenced from the Altai.
    We built a map of Neandertal ancestry in modern humans, using data from all non-Africans in the 1000 Genomes Project. We show that the average Neandertal ancestry on chromosome X of present-day non-Africans is about a fifth of the genome average. It is known that hybrid incompatibility loci concentrate on chromosome X. Thus, this observation is consistent with a model of hybrid incompatibility in which Neandertal variants that introgressed into modern humans were rapidly selected away due to epistatic interactions with the modern human genetic background.